
Finite Group Theory: the major problems, and why
we care



The formal definition of a group is one we’ve all seen many times:

Definition

A group is a pair (G , ◦) where G is a set, and ◦ : G × G → G is a binary
operation on G that satisfies the following three properties:

(i) Associativity. For all g , h, k ∈ G , (g ◦ h) ◦ k = g ◦ (h ◦ k).

(ii) Identity. G has an element, which we call 1G , satisfying
g ◦ 1G = 1G ◦ g = g for all g ∈ G . We call 1G an identity element
in (G , ◦).

(iii) Inverse. For all g ∈ G , there exists an element in G , which we call
g−1, satisfying g ◦ g−1 = g−1 ◦ g = 1G , where 1G is as in (ii). We
call g−1 an inverse of g in (G , ◦).

But what is the point of this? Is it abstract nonsense, or is there a
purpose (beyond the fun of it)?

Most branches of algebra we study today (i.e. Linear Algebra; Ring
Theory; Group Theory; Module Theory, etc.) were built from a desire to
get rigorous answers to questions from other areas of mathematics and
science.
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For example, building on ideas from both ancient China and ancient
Greece, Linear Algebra emerged in Europe in the 16th century as a
method to rigorously study various problems in Geometry, such as
intersections of planes, lines and other geometric objects.

Group Theory, on the other hand, discovered by Galois in the 19th
century, is the mechanism by which mathematicians understand
symmetry.

While numbers are abstract mathematical objects that allow us to
represent counting, Groups are abstract mathematical objects that allow
us to represent symmetry.

As with the branches of algebra of mentioned above, the definition of the
objects in Group Theory (i.e. groups) is entirely motivated by their
scientific purpose: the desire to understand symmetry..

Let’s look back at the definition:
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Definition

A group is a pair (G , ◦) where G is a set, and ◦ : G × G → G is a binary
operation on G that satisfies the following three properties:

(i) Associativity. For all g , h, k ∈ G , (g ◦ h) ◦ k = g ◦ (h ◦ k).

(ii) Identity. G has an element, which we call 1G , satisfying
g ◦ 1G = 1G ◦ g = g for all g ∈ G . We call 1G an identity element
in (G , ◦).

(iii) Inverse. For all g ∈ G , there exists an element in G , which we call
g−1, satisfying g ◦ g−1 = g−1 ◦ g = 1G , where 1G is as in (ii). We
call g−1 an inverse of g in (G , ◦).

Part (i) represents the fact that, if I perform two symmetries (g and h)
and then perform another (k) some time later; this is the same as
performing g , waiting a while, then performing h and k .
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g−1, satisfying g ◦ g−1 = g−1 ◦ g = 1G , where 1G is as in (ii). We
call g−1 an inverse of g in (G , ◦).

In part (ii), the identity represents the “do nothing” symmetry of an
object.
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Definition

A group is a pair (G , ◦) where G is a set, and ◦ : G × G → G is a binary
operation on G that satisfies the following three properties:
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(ii) Identity. G has an element, which we call 1G , satisfying
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in (G , ◦).

(iii) Inverse. For all g ∈ G , there exists an element in G , which we call
g−1, satisfying g ◦ g−1 = g−1 ◦ g = 1G , where 1G is as in (ii). We
call g−1 an inverse of g in (G , ◦).

Part (iii) encodes the fact the “reverse” of every symmetry is still a
symmetry.
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We’ve just looked at the symmetries of an equilateral triangle (i.e. a
regular 3-gon). There are 2n symmetries of a regular n-gon (made up of
n reflections and n rotations), and the group they constitute is called the
dihedral group D2n.

More generally, the group of symmetries of an n element set (or
equivalently the number of shuffles of a pack of n cards) is called the
symmetric group of degree n, and is written Sn.

There are many more symmetries of an n elements set (indeed, |Sn| = n!)
than a regular n-gon, since symmetries there are much less restrictive.

Historical note: The first definition of a group was given by Galois in
1830, and it was less abstract than the one above. Indeed, Galois defined
a group of substitutions of degree n to be what we now call a subgroup
of the symmetric group Sn. This shows that the study of groups is
fundamentally motivated by the desire to understand symmetry.
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Galois’ definition shows that the
study of groups is fundamentally mo-
tivated by the desire to understand
symmetry.

Because symmetry is so universal, Group Theory is highly ubiquitous: it
arises naturally not only in many fundamental areas of mathematics (like
Geometry, Topology, Number Theory, Harmonic Analysis and more); but
also in other areas of human study (like Virology, Chemistry, Physics,
Computer Science, Cryptography..).



Finite group theory: What are the major problems?

In early courses in group theory, one usually sees how to classify groups
of small order.

E.g. For a prime p, there is only one finite group of order p: the cyclic
group Cp (also called Z/pZ).

E.g. There are two finite groups of order 6, namely the cyclic group C6

and the symmetric group S3 of degree 3.

E.g. There are five finite groups of order 8, namely C8; C4 × C2;
C2 × C2 × C2; the dihedral group D8; and the quaternion group Q8.

If you’ve done MA3K4, you will also have seen the classification of
groups of order 4p and 2p2 (for p prime), for example.

The most major of the major problems in finite group theory is closely
related to this, and is called the Extension Problem.

The Extension Problem
Classify all of the finite groups.
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For various other values of n (always with hard restrictions on the prime
divisors of n), the finite groups of order n have been classified.

In particular, we know the finite groups of order up as far as
2047 = 211 − 1. Here are the number of groups of order 2k , for k ≤ 10.

|G | 2 22 23 24 25 26 27 28 29 210

#gps 1 2 5 14 57 267 2328 56092 10494213 49487365422

In total, there are roughly 49.5 billion groups of order at most 2047, and
roughly 99.3% have order a power of 2.

In fact, around 99.1% have order 210.

We will come back to this heuristic later in the talk, but for now...
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Moral of the story: In general, the Extension Problem is intractable! For
this reason, group theorists focus on other questions/areas, which aim to
get us as close to a solution to the Extension Problem as possible. For the
remainder of the talk, I will speak about three of these questions/areas:

1. The Classification of Finite Simple Groups;

2. Asymptotic group theory;

3. Burnside’s problems.



1. The Classification of Finite Simple Groups



Back to the extension problem

Recall from above, the ultimate goal of finite group theorists:

The Extension Problem
Classify all of the finite groups.

As mentioned, the Extension Problem, in full generality, is intractable (at
least at the moment..).

But as we saw before, we can classify some classes of finite groups (e.g.
those of prime order; those of order p2 or 2p2 for a prime p, and much
more.)

One particularly important class of finite groups are the finite simple
groups, i.e. the finite groups G in which the only normal subgroups are
{1G} and G itself.

But why are the finite simple groups so important?



Back to the extension problem

Recall from above, the ultimate goal of finite group theorists:

The Extension Problem
Classify all of the finite groups.

As mentioned, the Extension Problem, in full generality, is intractable (at
least at the moment..).

But as we saw before, we can classify some classes of finite groups (e.g.
those of prime order; those of order p2 or 2p2 for a prime p, and much
more.)

One particularly important class of finite groups are the finite simple
groups, i.e. the finite groups G in which the only normal subgroups are
{1G} and G itself.

But why are the finite simple groups so important?



Back to the extension problem

Recall from above, the ultimate goal of finite group theorists:

The Extension Problem
Classify all of the finite groups.

As mentioned, the Extension Problem, in full generality, is intractable (at
least at the moment..).

But as we saw before, we can classify some classes of finite groups (e.g.
those of prime order; those of order p2 or 2p2 for a prime p, and much
more.)

One particularly important class of finite groups are the finite simple
groups, i.e. the finite groups G in which the only normal subgroups are
{1G} and G itself.

But why are the finite simple groups so important?



Back to the extension problem

Recall from above, the ultimate goal of finite group theorists:

The Extension Problem
Classify all of the finite groups.

As mentioned, the Extension Problem, in full generality, is intractable (at
least at the moment..).

But as we saw before, we can classify some classes of finite groups (e.g.
those of prime order; those of order p2 or 2p2 for a prime p, and much
more.)

One particularly important class of finite groups are the finite simple
groups, i.e. the finite groups G in which the only normal subgroups are
{1G} and G itself.

But why are the finite simple groups so important?



The Jordan–Hölder theorem

Theorem (Jordan–Hölder theorem)

Every finite group G has a composition series, i.e. a series

{1G} = G0 E G1 E · · ·E Gr = G

such that for each 1 ≤ i ≤ r , the group Gi/Gi−1 is simple. Moreover,
although there can be different composition series, the length r , and the
isomorphism classes of the factors Gi/Gi−1 do not change. Thus, the
multiset {{Gi/Gi−1 : 1 ≤ i ≤ r}} is well-defined, and is called the set of
composition factors for G .

E.g. The alternating groups An are simple for n ≥ 5, while the cyclic
groups of prime order are simple. The composition factors of Sn for
n ≥ 5 are {{An,C2}}.

E.g. For p an odd prime, the composition factors of the dihedral group
D2p of order 2p are {{Cp,C2}}.
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This is why group theorists often refer to the finite simple groups as the
building blocks of the finite groups. In a certain sense, they are thought
of as analogous to the primes in number theory.

For this reason, understanding the finite simple groups is crucial if one
wants to get anywhere near the Extension Problem..

In the courses MA3K4: Introduction to Group Theory and MA442:
Group Theory at Warwick, one sees some of the early ideas group
theorists used to increase our understanding of the finite simple groups.

For example, in Chapter 3 of MA3K4, we use Sylow’s theorems to show
that various groups (for example groups of order 4pn) cannot be simple,
while in MA442, Sylow’s theorems (and various other ideas, such as
Burnside’s transfer theorem) are used to classify the finite simple groups
of order at most 500).

The most famous early theorem in this direction used deep applications
of these ideas to prove the following:

Theorem (Burnside’s paqb theorem)

Let p and q be primes, and let G be a group of order paqb. Then G is
not simple.
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while in MA442, Sylow’s theorems (and various other ideas, such as
Burnside’s transfer theorem) are used to classify the finite simple groups
of order at most 500).

The most famous early theorem in this direction used deep applications
of these ideas to prove the following:

Theorem (Burnside’s paqb theorem)

Let p and q be primes, and let G be a group of order paqb. Then G is
not simple.
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Then in the 1970s, there was an even more breathtaking advancement in
our understanding of the finite simple groups.

Theorem (The Odd Order Theorem; Feit & Thompson, 1970)

Let G be a finite group of odd order. Then G is not simple.

Encouraged by this, together with
some other deep results on finite sim-
ple groups like the Brauer-Fowler the-
orem, Daniel Gorenstein announced
in 1972 an ambitious 16 step pro-
gramme that would classify the finite
simple groups.
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The Classification of Finite Simple Groups

In a nutshell, the idea of the proof proceeds by first listing the known
finite simple groups:

I the cyclic groups Cp of prime order p;

I the alternating groups An of degree n ≥ 5;

I the finite groups of Lie type (these are essentially matrix groups,
e.g. PSLn(F) for n ≥ 1, F a finite field, and
(n, |F|) 6∈ {(2, 2), (2, 3)}); and

I the 26 sporadic simple groups.

Side note: The last category is a set of finite simple groups of order
between 7920 (the order of the Mathieu group M11) and

808017424794512875886459904961710757005754368000000000 ∼ 1053

(the order of the monster group M).

These groups do not fit naturally into any of the preceding three infinite
families.
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Gorenstein’s programme

In pursuit of a contradiction, one then chooses a finite simple group G
such that G is not one of those listed above, and |G | is as small as
possible.

From the previous theorems, we know that G has even order, and that
|G | has at least 3 prime divisors. The Brauer-Fowler theorem also gives
us information about the centralisers of elements of order 2 in G ; while a
method due to Bender gives certain restrictions on the maximal
subgroups of G .

The minimality of |G | also shows that all subgroups of G have their
composition factors lying in our know list of finite simple groups..
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The successful completion of this programme, and hence the
Classification of Finite Simple Groups was announced by Gorenstein in
1983.

Despite Gorenstein’s announcement, there was a gap in the proof, which
wasn’t completed until 2004, and took an extra 1000 pages to sort out
(done by M. Aschbacher and S. Smith).

In total, the theorem comprises work by around 100 different authors,
and the proof, in its entirety, is about 10000 pages in length.

It is one of the most significant achievements of 20th century
mathematics, though the New York Times were a little more downbeat,
with the headline:

“Mathematicians theorize themselves out of a job”

the day after the announcement, in 1983.
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Why are the New York Times wrong?

There is no doubt that the CFSG has been a monumental advancement
in our goal to understand the finite groups. But we are still nowhere near
a complete understanding (as we have of vector spaces in linear algebra,
for example).

There are a few reasons for this.

Although we now know what the building blocks of the finite groups are,
we have no idea how to “glue” them together! That is, given a multisets
C of finite simple groups, we have no idea how many, or what kind of,
finite groups have C as their set of composition factors. So we are still
very far away from solving the extension problem..

Also, the finite simple groups on our list are complicated! We still don’t
know everything we need to know about them (for example, we still
haven’t been able to classify all of their maximal subgroups). This brings
us nicely to..
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Ah, a quick aside just before we move on..

The so-called “2nd generation proof” of the Classification of Finite
Simple Groups is currently being worked on, by Richard Lyons, Ron
Solomon, and Warwick’s own Inna Capdeboscq.

The final proof will be more uniform in approach, and will be shorter.
(The plan is a volume of 11 books, comprising about 3000 pages in total.
Book 9 is almost ready..).
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2. Asymptotic group theory



In this talk, we’ve focused mostly on deterministic type problems in finite
group theory. That is, problems of the form: “Classify the finite groups
with property P..”.

As we’ve seen, this is hard! It leads us to the branch of finite group
theory called Asymptotic group theory.

The philosophy behind asymptotic group theory is to say: “OK, we can’t
classify finite the finite groups with property P, but can we say
something about how many groups satisfy property P? Or if we choose a
finite group at random from a certain list, then how likely it is that the
group we choose satisfies property P?

We’ve see a little more of this later on when we look at the Restricted
Burnside Problem. There, group theorists don’t try to classify the
d-generated finite groups with exponent n.. They just tried to count
them.
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A fact from earlier in the talk..
Earlier in the talk, we saw the number of groups of order 2k , for k ≤ 10.

|G | 2 22 23 24 25 26 27 28 29 210

#gps 1 2 5 14 57 267 2328 56092 10494213 49487365422

In total, there are roughly 49.5 billion groups of order at most 2047, and
roughly 99.3% have order a power of 2. In fact, around 99.1% have order
210.

Conjecture (Erdös, 1965)

Let f (n) be the number of isomorphism classes of finite groups of order
n. If n, x ∈ N with n ≤ 2x , then f (n) ≤ f (2x).

Conjecture (Pyber, 1990)

Let f ∗(n) be the number of isomorphism classes of finite groups of order
at most n. Let f ∗2 (n) be the number of isomorphism classes of finite
groups of 2-power order at most n. Then f ∗2 (n)/f ∗(n)→ 1 as n→∞.
That is, a random finite group has order a power of 2.

Both of these conjectures are still open.
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The number of isomorphism classes of finite groups of
order at most n

For a positive integer n with prime factorisation

n = pa11 pa22 . . . pakk (pi distinct primes)

write µ(n) := max{ai : 1 ≤ i ≤ n}. For example, µ(21023) = 10.

For a functions g(n) and h(n), the notation h(n) = o(g(n)) means that
h(n)/g(n)→ 0 as n→∞. For example, n5/3 = o(n2).

In 1990, Pyber proved the following incredible result.

Theorem (Pyber, 1990)

Let n ∈ N and let µ := µ(n). We have

f ∗(n) ≤ nµ
2/27+h(µ)

where h(µ) = o(µ2).

By work of Higman and Sims from the 1960s, the bound in the above
theorem is “best possible”.
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In 1990, Pyber proved the following incredible result.

Theorem (Pyber, 1990)

Let n ∈ N and let µ := µ(n). We have

f ∗(n) ≤ nµ
2/27+h(µ)

where h(µ) = o(µ2).

By work of Higman and Sims from the 1960s, the bound in the above
theorem is “best possible”.
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In order to make progress on Erdős’ and Pyber’s conjectures, one needs
to find out more about the mysterious function h in the above theorem.

In proving his theorem, one of three key steps that Pyber needed was a
count on the total number of subgroups of the symmetric group Sn.
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Let n ∈ N. The number of subgroups of the symmetric group Sn is at
most 20.71n2+h(n), where h(n) = o(n2).

He conjectured, however, that much more is true. (The following would
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Pyber’s conjecture

Conjecture (Pyber, 1990)

Let n ∈ N. The number of subgroups of the symmetric group Sn is at
most 2n2/16+h(n), where h(n) = o(n2).

Pyber’s conjecture is also heavily motivated by applications to:
(1) Galois theory (where one can count intermediate fields in a field
extensions by counting subgroups of the associated Galois group);

(2) Graph theory: the number of vertex transitive graphs on n vertices is
controlled by the number of (Certain) subgroups of Sn; and

(3) Topology: the number of conjugacy classes of subgroups of the
fundamental group for certain path-connected topological spaces is equal
to the number of coverings of that space.

Theorem (Roney-Dougal & T., 2023)

Pyber’s conjecture holds. In fact, the number of subgroups of the

symmetric group Sn is at most 2n2/16+cn3/2 , where c is some absolute
constant.
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Probabilistic conjectures for permutation groups
Recall the probabilistic conjectures of Erdös and Pyber from earlier.

Conjecture (Pyber, 1990)

Let f ∗(n) be the number of isomorphism classes of finite groups of order
at most n. Let f ∗2 (n) be the number of isomorphism classes of finite
groups of 2-power order at most n. Then f ∗2 (n)/f ∗(n)→ 1 as n→∞.
That is, a random finite group has order a power of 2.

An analogue for permutation groups was proposed by Kantor.

Conjecture (Kantor, 1990)

Let |Sub(Sn)| and |Sub2(Sn)| be the number of subgroups and
2-subgroups of Sn, respectively. Then |Sub2(Sn)|/|Sub(Sn)| → 1 as
n→∞. That is, a random subgroup of Sn has order a power of 2.

Theorem (Roney-Dougal & T., 2024)

Kantor’s conjecture is not true. Indeed, there exists an absolute constant
ε > 0 such that |Sub2(Sn)|/|Sub(Sn)| < 1− ε for all n ∈ N.

One can take ε = 1/2162 .
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A number of questions arise from this theorem:

Question 1
Can we use this to make progress on the Erdős and Pyber conjectures?

I think we still need better information on the constant c . At the
moment, we can only show c ≤ 2162 ...

Question 2
Can we use similar techniques to count subgroups of other classes of
finite (almost) simple groups? Or can we count certain types of
subgroups of finite groups?

The final part of Question 2 is not “just for the sake of it”. There is very
practical motivation..



A number of questions arise from this theorem:

Question 1
Can we use this to make progress on the Erdős and Pyber conjectures?
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The Group Isomorphism Problem
The Group Isomorphism Problem (henceforth abbreviated to GrpI) is the
decision problem for determining whether or not two groups G1 and G2

given by their multiplication tables are isomorphic.

The Group Isomorphism Problem (version we usually study)

Can we come up with an algorithm such that, given the multiplication
tables of two groups G1 and G2 of order n as input, a computer can
decide in a time which is polynomial in n, whether or not G1

∼= G2?

An easy method
Step 1: Choose a set X of generators for G1 of size at most
log |G1| = log n.
Step 2: Write down all maps f : X → G2. Use the multiplication table for
G2 to check which ones (if any) are isomorphisms.

In total, this takes time nlog n+o(log n)..

And we still can’t do much better! The best general result to date is to
due to Rosenbaum (2013), who showed that one can solve GrpI in time
n0.5 log n+o(log n).

Better results for restricted classes of groups exist, while exciting progress
was made in 2015 by Babai on the closely related Graph Isomorphism
Problem.
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What has this got to with counting subgroups of finite
groups?!

An intriguing new approach due to Gowers shows that an improved
understanding of subgroup enumeration could lead to remarkable
progress in GrpI.

The idea is as follows: For finite groups G and X , let Sub∼=X (G ) be the
set of subgroups H of G with H ∼= X . For n ∈ N, let k(n) be the
smallest positive integer such that for any two finite groups G1 and G2 of
order n, we have G1

∼= G2 if and only if |Sub∼=X (G1)| = |Sub∼=X (G2)| for
all k(n)-generated finite groups X . Then the GrpI can be solved in time
nk(n).

Gowers’ k(n) problem

Can we come up with upper bounds on k(n), in terms of n?

All we know at the moment is that k(n) ≤ log n..
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3. Burnside’s problems



In mathematical terms, Group The-
ory is quite a young subject (Galois
first defined a group in 1830, though
Euler and Lagrange had already done
some work on groups, under a differ-
ent name, in the 18th century).

By the late 1800s, we knew very little
about abstract group theory. One of
the most influential early group the-
orists was William Burnside.

In 1901, Burnside asked the following
famous question.

Burnside’s problem

Let G be a group which can be generated by d elements (G is said to be
d-generated in this case), and such that gn = 1G for all g ∈ G (G is said
to have exponent n in this case). Is G necessarily finite?
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Unpacking Burnside’s problem

Burnside’s problem

Let G be a group which can be generated by d elements (G is said to be
d-generated in this case), and such that gn = 1G for all g ∈ G (G is said
to have exponent n in this case). Is G necessarily finite?

Definition
Let G be a group, and let A be a non-empty subset of G . The subgroup
of G generated by A, written 〈A〉, is defined to be

〈A〉 := {aε11 . . . a
εm
m : m ∈ N, ai ∈ A, εi ∈ Z}.

So Burnside’s problems says that if G is a group, there exists A ⊆ G of
size d such that every element can be written as a product of powers of
elements of A, and every element of G has order at most n, then is G
finite? Or, more informally, if G “operationally” finite, then is G finite?

Does this seem like a reasonable question?

Example 1 Suppose that G , d and n are as in Burnside’s question, and
n = 2 (i.e. G is a d-generated group in which g2 = 1G for all g ∈ G ).
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Then g = g−1 for all g ∈ G , so we have

ab = (ab)−1 = b−1a−1 = ba

for all a, b ∈ G .

Thus, G is abelian. Hence, writing A = {x1, . . . , xd}, we have

|G | = |〈A〉| = |{aε11 . . . a
εm
m : m ∈ N, ai ∈ A, εi ∈ Z}|

= |{xe11 . . . xedd : ei ∈ {0, 1}}| ≤ 2d .

So Burnside’s problem has an affirmative answer in the case n = 2!

Example 2 Suppose that G , d and n are as in Burnside’s question, and
n = 3 (i.e. G is a d-generated group in which g3 = 1G for all g ∈ G ).

The same approach won’t work (there are examples of finite groups of
exponent 3 which are not abelian). But is there anything we can do?
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Yes! Claim: Let G be a group of exponent 3. Then G is “almost
abelian”. More precisely, a commutes with ab := b−1ab for all a, b ∈ G .

Proof of claim: Let G be as in the statement, and let a and b be
elements of G . Then we have

1G = (ba)3 = bababa

= b(b2b−2)a(b2b−2)baba

= b3(b−2ab2)(b−2b)aba

= (bab−1)(b−1ab)a since b3 = 1G , and hence b = b−2.

= (bab−1)(b2ab−2)a.

We therefore have a−1 = ab
−1

ab. Replacing b by b−1 gives
a−1 = abab

−1

. Thus,

ab
−1

ab = abab
−1

for all a, b ∈ G .

So raising both sides to the b2 yields:

aba = aab for all a, b ∈ G .
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The point of the previous claim is that if G is a group of exponent 3
which can generated by d elements (say a1, . . . , ad), then the group

N := 〈abd : b ∈ G 〉

is abelian, hence isomorphic to Cm
3 for some m (by the same argument as

used in Example 1). Since N E G and G/N can be generated by
〈a1N, . . . , ad−1N〉, an easy inductive argument shows that G is finite.

So in summary, recalling:

Burnside’s problem

Let G be a d-generated group of exponent n. Is G necessarily finite?

I The case n = 2 is easy;

I the case n = 3 is easy-ish;

I the case n = 4 is easy-ish (done by Sanov in 1940);

I What about the case n = 5?

NOBODY KNOWS..
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Burnside’s problem in exponent 5

Burnside’s problem in exponent 5 is notoriously difficult: we know almost
nothing about the problem in this case.

Even if we restrict to the case d = 2, we still have no idea what happens.

Burnside’s B(2, 5) problem (open)

Let G be a group which can be generated by 2 elements, and such that
g5 = 1G for all g ∈ G . Is G necessarily finite?

Despite this obstacle, a huge breakthrough was made concerning
Burnside’s problem in 1968.

Theorem (Adian and Novikov, 1968)

For every odd number n with n > 4381, there exist infinite, finitely
generated groups of exponent n. Thus, the answer to Burnside’s problem
is NO.
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Theorem (Adian and Novikov, 1968)

For every odd number n with n > 4381, there exist infinite, finitely
generated groups of exponent n. Thus, the answer to Bursnide’s problem
is NO.

Notes:

1. The lower bound in the theorem was improved to 101 by Adian in
2015. We still have no idea what happens between 5 and 101 (apart
from 6 – Marshall Hall proved in 1956 that G is finite in this case).

2. A similar result holds for even integers n, and is due to Ivanov
(1994).

3. Olshanskii provided another (incredible) counterexample to
Burnside’s problem in 1979: For a prime p, he constructed infinite
simple groups T (p) such that:

I T (p) can be generated by 2 elements; and
I Every nontrivial proper subgroup of T (p) is finite of order p.

These are called Tarski Monsters, and they exist for every prime
p > 1075.
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These examples (and the proofs within) show that Burnside’s problem is
very difficult in general.

Because of this difficulty, and in general the lack of progress made in the
first 30 years after the statement of Burnside’s problem, mathematicians
started to ask a weaker question in the 1930s. This became known as the
Restricted Burnside problem:

Restricted Burnside problem

Fix d , n ∈ N. Are there are only finitely many finite d-generated groups
G of exponent n?

A famous theorem of Hall & Higman (1956) shows* that the restricted
Burnside problem has an affirmative answer if and only if it has an
affirmative answer in the case where n is a prime power.

*There was one (pretty huge) caveat to the Hall-Higman theorem: they
prove that their result holds as long as, for each nonabelian simple group
S : (1) S can be generated by 2 elements; and (2) the only nonabelian
composition factor in Aut(S) is S itself. We only know these 2 things
hold because of CFSG, announced 27 years later!
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The Restricted Burnside problem

With the Hall–Higman reduction in mind, group theorists began working
furiously on the restricted Burnside problem in prime power exponent.
This allows one to assume that the group G one is working in is a finite
p-group, for some prime p (i.e. G has p-power order).

The first significant breakthrough came from Kostrikin in 1959.

Theorem (Kostrikin, 1959)

Fix d ∈ N and a prime p. There are only finitely many finite d-generated
groups G of exponent p. That is, the Restricted Burnside problem has a
positive solution for prime exponents.

Kostrikin’s idea used an intriguing connection between finite groups of
p-power order, and Lie algebras (on which Warwick’s Adam Thomas is
one of the world’s foremost experts!)
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Kostrikin’s idea used an intriguing connection between finite groups of
p-power order, and Lie algebras (on which Warwick’s Adam Thomas is
one of the world’s foremost experts!)



Lie algebras and finite p-groups

Definition

Let F be a field. A Lie algebra over F is a pair (L, [·, ·]) where

(a) L is a vector space over F;

(b) [·, ·] : L× L→ L is a bilinear map. That is, it satisfies
[v + w , u] = [v , u] + [w , u] and [λv , u] = λ[v , u] for all λ ∈ F; and
also the analogous linearity relations in the second coordinate.

(c) [v , v ] = 0 for all v ∈ L.

(d) The Jacobi identity [u, [v ,w ]] + [w , [u, v ]] + [v , [w , u]] = 0 holds for
all u, v ,w ∈ L.

The standard example is L := Mn(F), the set of (n × n)-matrices over F,
where [A,B] := AB − BA.

But what has this got to do with finite p-groups?!
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The connection
Let G be a finite group of exponent p (i.e. gp = 1G for all g ∈ G ). The
commutator subgroup γ2(G ) := [G ,G ] is defined by

[G ,G ] := 〈[g , h] : g , h ∈ G 〉

where [g , h] := ghg−1h−1. It’s main property is that G/[G ,G ] is abelian.

Since G/[G ,G ] is abelian, and G has exponent p, we have that
G/[G ,G ] ∼= (Z/pZ)n. That is, G/[G ,G ] is a vector space (of dimension
n) over the field F := Z/pZ.

We now define γ1(G ) := G , and for i ≥ 2,

γi (G ) := 〈[x , g ] : x ∈ γi−1(G ), g ∈ G 〉.

It is not hard to show that γc+1(G ) = {1G} for some c ∈ N.

We then define
L(G ) := γ1(G )/γ2(G )⊕ γ2(G )/γ3(G )⊕ . . .⊕ γn(G )/γc+1(G );and we set

[vγi (G ),wγj(G )] := [v ,w ]γi+j (mod n)(G ).
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Extending this operation linearly to all of L(G ), we get a Lie algebra,
called the Lie algebra associated to G .

In much the same way that Galois theory uses Group Theory to solve
problems in Number Theory, Kostrikin used this connection between
finite p-groups of exponent p and Lie algebras over F := Z/pZ to make
the extraordinary breakthrough on the Restricted Burnside problem
mentioned above.

The case of general prime power exponent d := pm was done by
Zelmanov in the late 1980s. He used a similar connection to the above,
but needed to work with Lie rings rather than Lie algebras, as Z/pmZ is
a field if and only if m = 1.

In 1994, Zelmanov was awarded the
Fields medal for his work.
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Conclusion

Finite group theorists focus on two types of problems:

1. Classification type problems (e.g. the CFSG); and

2. Asymptotic type problems (e.g. counting subgroups of finite groups;
asking what a random finite group looks like).

Although the first of these is a priori harder, classification problems can
be restrictive, and don’t always lead to progress in the asymptotic
problems that are needed for work on things like the Group Isomorphism
Problem, and Galois theoretic problems.

Some see the beauty of Group Theory in how fundamental it is to so
many different areas of mathematics and science.

In my view, another huge aspect of its beauty is how quickly one can get
from the definition of a group, to deep and important problems.

For example, if you can prove that a 2-generated group G in which
g5 = 1G for all g ∈ G , is finite, then you will (without a doubt) win a
Fields medal...
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